
Benchmark and Framework for Encouraging Research
on Multi-Threaded Testing Tools

Klaus Havelund
Kestrel Technology

NASA Ames Research Center
Moffett Field, CA 94035-1000 USA

havelund@email.arc.nasa.gov

Scott D. Stoller
Computer Science Department

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

stoller@cs.sunysb.edu

Shmuel Ur
IBM Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
ur@il.ibm.com

Abstract

A problem that has been getting prominence in testing is
that of looking for intermittent bugs. Multi-threaded code
is becoming very common, mostly on the server side. As
there is no silver bullet solution, research focuses on a va-
riety of partial solutions. In this paper (invited by PADTAD
2003) we outline a proposed project to facilitate research.
The project goals are as follows. The first goal is to create a
benchmark that can be used to evaluate different solutions.
The benchmark, apart from containing programs with doc-
umented bugs, will include other artifacts, such as traces,
that are useful for evaluating some of the technologies. The
second goal is to create a set of tools with open API’s that
can be used to check ideas without building a large system.
For example an instrumentor will be available, that could
be used to test temporal noise making heuristics. The third
goal is to create a focus for the research in this area around
which a community of people who try to solve similar prob-
lems with different techniques, could congregate.

1. Introduction

The increasing popularity of concurrent Java program-
ming — on the Internet as well as on the server side — has
brought the issue of concurrent defect analysis to the fore-
front. Concurrent defects such as unintentional race condi-
tions or deadlocks are difficult and expensive to uncover and
analyze, and such faults often escape to the field. The devel-
opment of technology and tools for identifying concurrent

defects are now considered by some experts in the domain
as the most important issue that needs to be addressed in
software testing [11].

There are a number of distinguishing factors between
concurrent defect analysis and sequential testing and these
differences make it especially challenging. One problem is
that the set of possible interleavings is huge, and it is not
practical to try all of them. Only a few of the interleavings
actually produce concurrent faults. Thus, the probability of
producing a concurrent fault is very low. Another problem
is that under the simple conditions of unit testing the sched-
uler is deterministic. Because of this, executing the same
tests repeatedly does not help. Due to this fact, concurrent
bugs are often not found early in the process but rather only
in stress test or by the customer. The problem of testing
multi-threaded programs is even more costly because tests
that reveal a concurrent fault in the field or in a stress test are
usually long and run under different environmental condi-
tions. As a result, such tests are not necessarily repeatable,
and when a fault is detected, much effort must be invested
in recreating the conditions under which it occurred. When
the conditions of the bug are finally recreated the debugging
itself may mask the bug (the observer effect).

All the currently used testing techniques, some of which,
such as coverage and inspection, proved very useful, ad-
dress sequential problems. A solution that is being at-
tempted is to hide the multi-threading from the user [1].
However, no architecture has been found that lets the user
take full advantage of the fact that the program is multi-
threaded or that the hardware is parallel and yet lets her pro-
gram as if intermittent bugs were not a problem. Existing



attempts only serve to hide the bugs even further, because
the programmer is not aware that she can cause such bugs.

There is a large body of research involved in trying to
improve the quality of multi-threaded programs both in aca-
demic circles and in industry. Progress has been made in
many domains and it seems that a solution of high quality
will contain components from many of them. Work on race
detection [29] [30] [22] [27] [13] has been going on for
a long time. Race detection suffers from the problem of
false warnings. To alleviate this problem, tools have been
developed which try to increase the probability of bugs be-
ing discovered by creating more races have been developed
[32] [12]. The tools that cause races do not report any false
alarms (they actually do not report anything), they just try
to make the user tests fail. Tools for replay [9], necessary
for debugging and containing technology useful for testing,
have been developed. It is hard to create replay that always
work. Therefore, tools that increase the probability of re-
play have also been developed [12]. Static analysis tools
of various types, as well as formal analysis tools, are be-
ing developed, which can detect faults in the multi-threaded
domain [31] [18] [10]. Analysis tools that show a view of
specific interest in the interleaving space both for coverage
and performance [6][18] are being worked on. Currently the
most common testing methodology by dollar value is taking
single thread tests and creating stress tests by cloning them
many times and executing them simultaneously [17] (Ratio-
nal Robot and Mercury WinRunner). There are a number of
approaches to cloning, some of which are very practical. In
addition, outside the scope of this work but closely related,
are a variety of programming and debugging aids for such
an environment.

There is a need for a benchmark for formally assessing
the quality of different tools and technologies and for com-
paring them. Many areas, including some of the technolo-
gies discussed in this paper have benchmarks [2]. What we
suggest in this paper is different in that we not only help
compare the tools but also build the tools. This is done in
a number of ways: artifacts that are useful for testing are
available in addition to the test programs; and a framework
of tools is available so that the user need only change his
component. Not only tools, but also research in areas such
as bug classification, can be helped by this process.

Section 2 lists the technologies which we think are rele-
vant to the benchmark. Section 3 details the interaction be-
tween the technologies. Section 4 explains what the bench-
mark will contain, and we conclude in section 5.

2. Existing dedicated concurrent testing tech-
nologies

In this section we survey some technologies which we
think are the most useful or promising for the creation of

concurrent testing tools and show how they could interact.
We divide the technologies into two domains. The first in-
cludes technologies that statically inspect the program and
glean some information. This information could be in the
form of a description of a bug, stating that a synchronization
statement is redundant or pointing to missing locks. Static
technologies can also be used to generate information that
other technologies may find useful such as a list of program
statements from which there can be no thread switch. The
static technologies which we discuss are formal verification
mainly model checking and forms of static analysis. The
second group of technologies are active while the program
is executing. The one most commonly associated with con-
current testing is race detection. However, we believe that
noise makers, replay, coverage and performance monitors
are also of importance. A third group which we mention
but not discuss is trace analysis technologies. Some tech-
nologies such as race detection, coverage or performance
monitoring can be performed on-line and off-line. The trade
off is usually that on-line affects performance and off-line
requires huge storage space. As the underlying technolo-
gies is very similar we will mostly discuss the on-line ver-
sion in the section on dynamic technologies. In addition,
we talk about cloning, which is currently the most popular
testing technique for concurrent bugs in the industry. The
technologies described in this paper are white box in that
knowledge of the code is assumed. However, cloning is a
black box technique, usually deployed very late in the de-
velopment process. Cloning is mentioned here principally
for completeness.

2.1. Static testing techniques

Formal Verification- Model checking is a family of tech-
niques, based on systematic and exhaustive state-space ex-
ploration, for verifying properties of concurrent systems.
Properties are typically expressed as invariants (predicates)
or formulas in a temporal logic. Model checkers are tradi-
tionally used to verify models of software expressed in spe-
cial modeling languages, which are simpler and higher-level
than general-purpose programming languages. (Recently,
model checkers have been developed that work by directly
executing real programs; we classify them as dynamic tech-
nologies and discuss them in section 2.2.) Producing mod-
els of software manually is labor-intensive and error-prone,
so a significant amount of research is focused on abstrac-
tion techniques for producing such models automatically or
semi-automatically. Notable work in this direction includes
FeaVer [21], Bandera [10], SLAM [3], and BLAST [20].

Model checking is infeasible for concurrent systems with
very large state spaces, so the goal is not only to translate
the program into the modeling language, but also to deter-
mine which details of the program are not essential for ver-

2



ifying the required properties and to omit those details from
the model. The models should normally beconservative:
they may over-approximate, but not under-approximate, the
possible behaviors of the program. Thus, if a conservative
model of a program satisfies a given invariant, then so does
the program.

Static Analysis- Static analysis plays two crucial roles
in verification and defect detection. First, it is the founda-
tion for constructing models for verification, as described
above. Dependency analysis, in the form ofslicing, is used
to eliminate parts of the program that are irrelevant to the
properties of interest.Pointer analysisis used to conserva-
tively determine which locations may be updated by each
program statement; this information is then used to deter-
mine the possible effects of each program statement on the
state of the model. For concurrent programs,escape anal-
ysis, such as [7], is used to determine which variables are
thread-local and which may be shared; this information can
be used to optimize the model, or to guide the placement of
instrumentation used by dynamic testing techniques.

Second, static analysis can be used by itself for verifi-
cation and defect detection. Compared to model checking,
program analysis is typically more scalable but more likely
to give indeterminate results (“don’t know”). One approach
is to develop specialized static analyses for verifying spe-
cific properties. For example, there are type systems for
detecting data races and deadlocks [13] [5]. These type sys-
tems are modular and scalable, but they require program-
mers to provide annotations in the program, and they pro-
duce false alarms if the program design is inconsistent with
the design patterns encoded in the type system. There are
also static analysis frameworks that can handle large classes
of properties. Frameworks that use only conservative analy-
ses, such as TVLA [23] and Canvas [28], support both veri-
fication and defect detection. TVLA can conservatively an-
alyze systems with an unspecified and unbounded number
of threads. Engler’s analysis framework [15] is not conser-
vative (it might miss some violations of the specified prop-
erties) and does not deal with concurrency directly. How-
ever, it has demonstrated effectiveness at finding bugs in
real operating system code, including some concurrency-
related bugs, e.g., forgetting to release a lock.

2.2. Dynamic testing technologies

All the dynamic testing technologies discussed in this
section make use of instrumentation technology. An instru-
mentor is a tool that receives as input the original program
(source or object) and instruments it, at different locations,
with additional statements. During the execution of the pro-
gram, the instructions embedded by the instrumentor are ex-
ecuted. The instrumentor should have a standard interface
that let the user tell it what type of instructions to instru-

ment, which variables, and where to instrument in terms of
methods and classes. In addition, the same interface tells
it what code to insert in these locations. This interface en-
ables the user of the instrumentor (be it noise maker, race
analyzer, replay or coverage tool) to take full advantage of
the tool. It also enables performance enhancements, such as
not instrumenting in locations where static analysis shows
instrumentation to be unnecessary.

The instrumentation can be at the source code, the byte
code or the JVM level. The JVM level has the benefit of be-
ing the easiest but is the least transportable. Both the byte-
code and the source are transportable. Instrumenting at the
bytecode level is easier and is therfore the most common.

In the following, it is assumed that an instrumentor is
available.

Noise makers -A noise maker [12] [32] belongs to the
class of testing tools that make tests more likely to fail and
thus increase the efficiency of testing. In the sequential do-
main, such tools [25] [33] usually work by denying the ap-
plication some services, for example returning that no more
memory is available to a memory allocation request. In the
sequential domain, this technique is very useful but is lim-
ited to verifying that, on the bad path of the test, the program
fails gracefully. In the concurrent domain, noise makers are
tools that force different legal interleavings for each execu-
tion of the test in order to check that the test continues to
performs correctly. In a sense, it simulates the behaviour of
other possible schedulers. The noise heuristic, during the
execution of the program, receives calls embedded by the
instrumentor. When such a call is received, the noise heuris-
tic decides, randomly or based on specific statistics or cov-
erage, if some kind of delay is needed. Two noise makers
can be compared to each other with regard to the perfor-
mance overhead and the likelihood of uncovering bugs.

There are two important research questions in this do-
main. The first to find noise making heuristics with a
higher likelihood of uncovering bugs. The second, impor-
tant mainly for performance but also for the likelihood of
finding bugs, is the question of where calls to the heuristic
should be embedded in the original program.

Race and deadlock detection -A race is defined as ac-
cesses to a variable by two threads, at least one of which
is a write, which have no synchronization statement tempo-
rally between them [30]. A race is considered an indica-
tion of a bug. Race detectors are tools that look, online or
offline, for evidence of existing races. Typically, race de-
tectors work by first instrumenting the code such that the
information will be collected and then they process it. On-
line race detection suffers from performance problems and
tends to slow down the application significantly. On-line
race detection techniques compete in the performance over-
head they produce. Off-line race detection suffers from the
fact that huge traces are produced, and techniques compete

3



in reducing and compressing the information needed. The
main problem of race detectors of all breeds is that they pro-
duce too many false alarms.

While the definition of race used by the tools is simi-
lar, the ability to detect user implemented synchronization
is different. Detecting such synchronization with high prob-
ability will alleviate much of the problem of false alarms.

Annotated traces of program executions can help race
detection research. The trace will include all the informa-
tion needed by the race detection tools, such as memory
location accessed and synchronization events. In addition,
for each record, annotated information is kept about why it
was recorded, so that the race detection tool can decide if it
should consider this record. The annotation will also denote
the bugs revealed by the trace so that the ratio between real
bugs and false warnings can be easily verified.

A deadlock is defined as a state where, in a collection
of threads, each thread tries to acquire a lock already held
by one of the other threads in the collection. Hence, the
threads are blocked on each other in a cyclic manner. Tools
exists which can examine traces for evidence of deadlock
potentials [16] [19]. Specifically they look for cycles in lock
graphs.

Replay -One of the most annoying features of concurrent
testing is that once a bug is seen it may be very difficult to
remove. There are two distinct aspects of this problem. The
first is that many times the bug does not reproduce with high
enough probability. The second is that even if it does, when
you try to analyze it using a debugger or print statements, it
goes away. The ability to replay a test is essential for debug-
ging. Replay has two phases: record and playback. In the
record phase, information concerning the timing and any
other “ random” decision of the program is recorded. In the
playback phase, the test is executed and the replay mecha-
nism ensures that the same decisions are taken. There are
many possible sources of randomness in the execution of
a test on a program. Some apply even to sequential algo-
rithm, for example, the most obvious are random and time
functions. Less obvious sources might include using a hash
function where the order of the objects taken out depends
on the location in memory and varies from execution to ex-
ecution. Another source of randomness is the thread sched-
uler, which can choose a different location for the context
switches in different executions. Doing full replay [9] may
be difficult and may require the recording of a lot of infor-
mation as well as wrapping many functions. Partial replay,
which causes the program to behave as if the scheduler is
deterministic and repeats the previous test [12] is much eas-
ier and, in many cases, good enough. Partial replay algo-
rithms can be compared on the likelihood of performing re-
play and on their performance. The latter is significant in
the record phase overhead, and not so much in the replay
phase.

Coverage -Malaiya et al [24] showed a correlation be-
tween good coverage and high quality testing mainly at the
unit level. The premise, albeit simplified, is that it is very
useful to check that we have gone through every statement.
This coverage measure is of very little utility in the multi-
threading domain. An equivalent process, in the multi-
threaded domain, is to check that variables on which con-
tention can occur had contention in the testing. Such mea-
sures exist in ConTest [12]. Better measures should be cre-
ated and their correlation to bug detection studied. A new
and interesting research question is to use coverage in order
to decide, given limited resources, how many times each
test should be executed. The reason a test should be exe-
cuted more than once is that even if the test can potentially
find a bug in the concurrent domain, it is not guaranteed, or
even likely, to do so.

All the concurrent coverage models that have been cre-
ated suffer from the problem that most tasks are not feasible.
For example, consder the model: for all variables, a variable
is covered if it has been touched by two threads. Most tasks
in this model are not feasible. Static techniques could be
used to evaluate which variables can be accessed by multi-
ple threads. This evaluation is needed to create the coverage
metric.

Systematic state space exploration -Systematic state
space exploration [14] [31] [18] is a technology that in-
tegrates automatic test generation, execution and evalua-
tion in a single tool. The idea is to systematically explore
the state spaces of systems composed of several concurrent
components. Such tools systematically explore the state
space of a system by controlling and observing the execu-
tion of all the components, and by reinitializing their exe-
cutions. They search for deadlocks, and for violations of
user-specified assertions. Whenever an error is detected
during state-space exploration, a scenario leading to the er-
ror state is saved. Scenarios can be executed and replayed.
To implement this technology, replay technology is needed
to force interleavings, instrumentation is needed and cover-
age is advisable so that the tester can make informed deci-
sions. on the progress of the testing. Another systematic
state-space exploration tool, for C programs, is CMC [26].
Unlike VeriSoft, CMC uses traditional state-based search
algorithms, not state-less search, so it uses ”clone” proce-
dures to copy the system state, and does not rely on replay.

2.3. Cloning

Cloning, also called load testing, is the most commonly
used testing technique aimed at finding intermittent bugs
and evaluating performance. Cloning is used at the tail end
of development, either at system testing or as a specialized
phase called stress testing. The idea, used in common com-
mercial tools for testing client server applications such as

4



Performance Monitoring

Static 
Analysis

Formal 
VerificationStatic

State Space
Exploration

Cloning

Noise Making

Race
Detection

Replay

Coverage

Dynamic

On−Line

Off−Line

detection
Race

Coverage

Trace Evaluation

Instrum
entation

Figure 1. Interrelations between technologies

Rational Robot or Mercury LoadRunner, is to take sequen-
tial tests and clone them many times. This technique has the
advantage of being both relatively simple and very efficient.
Because the same test is cloned many times, contentions
are almost guaranteed. There are a number of problems,
which require careful design. The first is that the expected
results of each clone need to be interpreted, so verifying if
the test passed or failed is not necessarily straightforward.
Many times, changes that distinguish between the clones are
necessary. This technique is purely a black box technique.
It may be coupled with some of the techniques suggested
above, such as noise making or coverage, for greater effi-
ciency.

3. Interactions between technologies

Figure 1 contains a high level depiction of the interac-
tion between the different technologies. Each technology is
contained in a rounded box. The edges represent the flow of
information. For example, information produced by static
analysis can be used by the dynamic and trace evaluation
technologies. Instrumentation is an enabling technology for
all thei technologies included in the dynamic and trace eval-
uationi boxes. The dashed line around the cloning and the
various dynamic analysis techniques signifies that there is
value in using the techniques at the same time; however,
no integration is needed. The technologies are orthogonal
and there is even no awareness that the other technology
is being used. For example, coverage can be measured for
cloned tests.

The static technologies (static analysis and formal veri-
fication), besides being used directly for finding bugs, can
be used to create information that is useful for other tech-
nologies. Choi et al’s work [8] is a nice example of the use
of static analysis to optimize run-time race detection. In-
strumentation is an enabling technology that is a required
part of many technologies. The instrumentation technology
needed for all the dynamic technologies and for off-line race
detection is virtually identical.

Technologies may be combined in a variety of ways. For
example, ConTest contains an instrumentor, a noise genera-
tor, a replay and coverage component, and a plan for incor-
porating static analysis and on-line race detection. The inte-
gration of this component is integral to the service that Con-
Test gives to testing multi-threaded Java programs. With
ConTest, tests can be executed multiple times to increase the
likelihood of finding bugs (instrumentor and noise). Once
a bug is found replay is used to debug it. Coverage is used
to evaluate the quality of the testing and static analysis will
improve the coverage quality and the performance of the
noise maker. Another example is Java PathExplorer (JPaX)
[19]. Java PathExplorer is a runtime monitoring tool for
monitoring the execution of Java programs. It automati-
cally instruments the Java bytecode of the program to be
monitored, inserting logging instructions. The logging in-
structions write events revelant for the monitoring to a log
file or to a socket in case online-monitoring is requested.
Event traces are examined for data races (using the Eraser
algorithm) and deadlock potentials. Furthermore, JPaX can
monitor that an execution trace conforms with a set of user
provided properties stated in temporal logic.

One of the goals of this proposed project is to define a
set of APIs so that improvement in one tool could be used
to improve the overall solution. The assumption is that a
good solution will have a number of components. It is im-
portant that a researcher could work on one component, use
the rest ”off-the shelf” and check the global impact of his
work. To be more concrete: assume that an instrumented
application is available in which a call is placed in every
concurrent location that has information such as the thread
name location, bytecode type, abstract type (variable, con-
trol), read/write. The writer of a race-detection or noise
heuristic can then write his algorithm only.

If the instrumentor is told some information by the static
analyzer, on every instrumentation point, this can be used
to decide on a subset of the points to be instrumented. For
example, only on access to variables touched by more than
one thread which exist at this point. Alternatively, the in-
formation may be passed through in the instrumented call
to the noise maker or any other tool that makes use of the
instrumentation.

5



4. Benchmark

The different technologies for concurrent testing may be
compared to each other in the number of bugs they can find
or the probability of finding bugs, in the percentage of false
alarms and in performance overhead. Sometimes the tech-
nology itself can not be compared as it is only part of a
solution and the improvement in the solution, as a whole,
must be evaluated. In order to facilitate the comparison,
we propose to create a benchmark that is composed of four
parts. The first is a repository of programs on which the
technologies can be evaluated, composed of:

• Multi-threaded Java programs including source code
and bytecode in standard project format

• Tests for the programs and test drivers

• Documentation of the repository and of the bugs in
each program

• Versions of the programs instrumented with calls to
empty classes containing information useful to noise,
replay, coverage, and race applications.

• Sample traces of executions using the standard for-
mat for race detection and replay. Each record in the
traces contain information about the location in the
program from which it was called, what was instru-
mented, which variable was touched, thread name, if it
is a read or write, and if this location is involved in a
bug

• A script for producing any number of desirable traces
in the above format. (Possibly the script will have in-
puts that decide the format as well as the locations at
which the script points are written)

The repository of programs should include many small
programs that illustrate specific bugs as well as larger pro-
grams and some very large programs with bugs from the
field. The fact that not only the programs with the bugs are
available but also the instrumented program and the traces,
makes evaluating many of the technologies much easier.
For example, race detection algorithms may be evaluated
using the traces without any work on the programs them-
selves.

The second component of the benchmark is a prepared
experiment. One problem in evaluation of technologies like
noise makers and race detection is that statistics need to be
gathered and analyzed. The question is not if a bug can
be found using the technology on a specific test but what
is the probability of that bug being found. The experiment
part of the benchmark contains prepared scripts with which
programs such as race detection and noise can be evaluated
as to how frequently they uncover faults, and if they raise

false alarms. The analysis of the executions and statistics on
the performance of the technologies is also executed with a
script. This script produces a prepared evaluation report,
which is easy to understand. The bottom line is that we will
make it easier to evaluate technology once a technology is
ready to be tested. All the machinery will be in place so that
with the push of a button, it can be evaluated and compared
to alternative approaches.

In the previous section we talked about the technologies
with potential for impacting the concurrent testing prob-
lem. We showed that the technologies are very interdepen-
dent. The third component of the benchmark is a repository
of tools with standard interfaces. This way the researcher
could use a mix-and-match approach and complement her
component with benchmark components to create and eval-
uate solutions based on the created whole. This reposi-
tory will include, at the very least, an instrumentor which
is needed in most solutions as well as some noise makers
and race detection components.

The fourth component is a specially prepared benchmark
program that has no inputs and many possible results. We
create the program by having a “main” that starts many of
our simpler documented sample programs in parallel, each
of which writes its result (with a number of possible out-
comes) into a variable. The benchmark program outputs
these results as well as the order in which the sample pro-
grams finished. Tools such as noise makers can be com-
pared as to the distribution of their results. Analysis of out-
comes will be produced as part of the prepared experiment.

5. Conclusions

In this paper, we discussed the problem of testing multi-
threaded technology and how to create a benchmark that
will enable research in this domain. There are many tech-
nologies involved, and improvements in the use of one tech-
nology may depend on utilizing another. We believe that
greater impact, and better tools, could result if use was made
of a variety of relevant technologies. Toward this end we
would like to start an enabling project that will help create
useful technologies, evaluate them and share knowledge.
There are specific attempts at creating tools that are com-
posed of a variety of technologies [12] [11] but they do not
provide an open interface for extention and do not support
the evaluation of competing tools and technologies.

The first phase in preparing such a benchmark is to sur-
vey researchers working in the field as to what will be of
most use to them. Interesting questions which could be in
cluded in the survey are:

• Are there additional technologies that should be in-
cluded in the benchmark? If so, please describe the
technology and how it interacts with the other tech-
nologies.

6



• Would you like additional artifacts to be included in
the benchmark?

• Do you have any specific requirements for interfaces
of technologies included in the benchmark? Please ex-
plain the reason for them.

The suggested framework is an ideal tool to be used in
education. The amount of code needed to build a coverage,
noise, race detection or replay tool is a few hundred lines
of code and is easily within the scope of a class exercize.
Indeed, this was one of the motivations of this paper as the
work reported in [4] started this way.

A number of groups have expressed interest in partici-
pating in this project. We hope to have the specification
phase completed by July 2003. We are also looking at for-
mal structures under which this project could be held.

References

[1] S. Asbury and S. R. Weiner.Developing Java Enterprise
Applications,. Wiley Computer Publishing, 1999.

[2] G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Pasareanu,
and S. F. Siegel. Comparing finite-state verification tech-
niques for concurrent software. Technical Report UM-CS-
1999-069, Department of Computer Science, University of
Massachusetts at Amherst, USA, 1999.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au-
tomatic predicate abstraction of c programs. InProc. ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 203–213, 2001.

[4] Y. Ben-Asher, Y. Eytani, and E. Farchi. Heuristics for
finding concurrent bugs. InInternational Parallel and
Distributed Processing Symposium, IPDPS 2003, PADTAD
Workshop, 2003.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks.
In Proc. 17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOP-
SLA), pages 211–230, Nov. 2002.

[6] A. S. Cheer-Sun Yang and L. Pollock. All-du-path cover-
age for parallel programs.ACM SigSoft International Sym-
posium on Software Testing and Analysis, 23(2):153–162,
March 1998.

[7] J.-D. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Mid-
kiff. Escape analysis for Java. InProc. ACM Conference
on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Oct. 1999.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace detection
for multithreaded object-oriented programs. InProc. ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 258–269, 2002.

[9] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. InProceedings of the SIGMET-
RICS Symposium on Parallel and Distributed Tools, pages
48–59, Welches, Oregon, August 1998.

[10] J. C. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. InProc. 22nd International
Conference on Software Engineering (ICSE). ACM Press,
June 2000.

[11] J. C. Cunha, P. Kacsuk, and S. C. Winter, editors.Parallel
Program Development For Cluster Computing. Nova Sci-
ence Publishers, Jan. 2000.

[12] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java program test generation.IBM Sys-
tems Journal, 41(1):111–125, 2002. Also available as
http://www.research.ibm.com/journal/-
sj/411/edelstein.html .

[13] C. Flanagan and S. N. Freund. Detecteing race conditions in
large programs. InProceedings of the Program Analysis for
Software Tools and Engineering Conference, June 2001.

[14] P. Godefroid. Model checking for programming languages
using verisoft. InSymposium on Principles of Programming
Languages, pages 174–186, 1997.

[15] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 69–82,
2002.

[16] J. J. Harrow. Runtime checking of multithreaded applica-
tions with visual threads. InSPIN, pages 331–342, 2000.

[17] A. Hartman, A. Kirshin, and K. Nagin. A test execution
environment running abstract tests for distributed software.
In Proceedings of Software Engineering and Applications,
SEA 2002, 2002.

[18] K. Havelund and T. Pressburger. Model checking java pro-
grams using java pathfinder.International Journal on Soft-
ware Tools for Technology Transfer, STTT, 2(4), April 2000.

[19] K. Havelund and G. Rosu. Monitoring java programs with
Java PathExplorer. InIn Proceedings First Workshop on
Runtime Verification, RV’01, Paris, France, July 23,.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InProc. ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 58–70, 2002.

[21] G. J. Holzmann and M. H. Smith. Software model check-
ing: Extracting verification models from source code. In
Proc. International Conference on Formal Description Tech-
niques and Protocol Specification, Testing and Verification
(FORTE/PSTV), pages 481–497. Kluwer, 1999.

[22] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. To-
ward integration of data race detection in dsm systems.Jour-
nal of Parallel and Distributed Computing, 59(2):180–203,
1999.

[23] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
Proc. ACM International Symposium on Software Testing
and Analysis (ISSTA), pages 26–38, 2000.

[24] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe.
Software test coverage and reliability. Technical report, Col-
orado State University, 1996.

[25] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services. Technical
report, University of Wisconsin, Madison, 1995.

7



[26] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking Real
Code. InProc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), Dec. 2002.

[27] R. Netzer and B. Miller. Detecting data races in parallel
program executions. InAdvances in Languages and Compil-
ers for Parallel Computing, 1990 Workshop, pages 109–129,
Irvine, Calif., 1990. Cambridge, Mass.: MIT Press.

[28] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and
M. Sagiv. Deriving specialized program analyses for cer-
tifying component-client conformance. InProc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 83–94, 2002.

[29] B. Richards and J. R. Larus. Protocol-based data-race de-
tection. In Proceedings of the SIGMETRICS symposium
on Parallel and distributed tools, pages 40–47. ACM Press,
1998.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multi-
threaded programs.ACM Transactions on Computer Sys-
tems (TOCS), 15(4):391–411, 1997.

[31] S. D. Stoller. Model-checking multi-threaded distributed
Java programs.International Journal on Software Tools for
Technology Transfer, 4(1):71–91, Oct. 2002.

[32] S. D. Stoller. Testing concurrent java programs using ran-
domized scheduling. InIn Proceedings of the Second Work-
shop on Runtime Verification (RV), volume 70(4) of Elec-
tronic Notes in Theoretical Computer Science. Elsevier,
2002.

[33] J. A. Whittaker. How to Break Software. Addison-Wesley,
2003.

8


